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Fig. 1. Paper folding sequence with paperBSDF

Curve folded surfaces hold its special position in the field of computational
origami, which is widely used in architecture and art design. We demonstrate
a curve folding technique[Kilian et al. 2017] based on coupled prisms struc-
ture[Botsch et al. 2006]. By combining the original prism’s face energy with
energy between prism’s edge, we penalize stretching more than bending and
minimize this non-linear energy to simulate the curve folding sequence as
shown in Figure 1. We show both the original prisms based deformation and
the curve folding technique on several examples, and rendered the paper
folding example with paper BSDF[Papas et al. 2014].
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1 INTRODUCTION
PriMo[Botsch et al. 2006] is a robust method to achieve surface de-
formation by emulating physically plausible surface behavior. Each
polygonal face of the surface mesh is embedded in a volumetric
prism, which are coupled through non-linear, elastic forces. Each
polygonal face has the same transformation as its prism structure
during deformation, and only rigid transformation(rotation and
translation) is allowed for each face(prism) in this method. Given
rigid transformation of parts of the prisms as hard constraints by
a user, other prisms’ rigid transformation are solved by minimize
the non-linear energy among prisms. The rigidity of the prisms
prevents extreme degenerations, making this method numerical
stable and robust. We implement the PriMo method based on Open-
Mesh[Botsch et al. 2002], a generic and efficient polygon mesh data
structure with half-edge implementation.
For curve folding, surface bending is more physically plausible

than stretching. We treat the energy between prisms’ faces as a
regularization energy term, and add a new term between prisms’
edges as the main energy term to penalize stretching more than
bending. The hard constraint is the folding(dihedral) angle between
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the polygonal faces, which share a same crease edge segment. We
firstly triangulate a 2D planar mesh based on constrained Delau-
nay triangulation[Shewchuk 1996][Jacobson et al. 2017] with given
crease pattern, and increase folding angle 1◦ at each step to generate
the paper folding examples. To render realistic paper appearance, we
implement the paper shader based on the state-of-the-art analytical
paper BSDF model[Papas et al. 2014], which converts a multi-layer
subsurface scattering model(BSSRDF)[Donner and Jensen 2005]
into a BSDF and retains physically-based absorption and scattering
parameters obtained from the measurements.

2 METHODOLOGY
We demonstrate PriMo method with triangle mesh for simplicity,
though this "prism" concept could be extended to any general polyg-
onal mesh. After demonstrating the general deformation model, we
show how to adopt PriMo method to do curve folding deformation
by modifying the energy term. Specifically, the implementation de-
tails are given afterwards including mesh triangulation from crease
pattern, and how to generate folding sequence. Finally, we demon-
strate the rendering technique that we use to synthesize paper-like
folding sequence as shown in Figure 1.

2.1 PriMo
In this section, we define the prism structure the non-linear energy
on triangle mesh, followed by the numerical method and algorithm
to solve the rigid transformation for each prism while minimizing
this energy.

2.1.1 Prism structure. We denote the triangle mesh as the set of
triangle primitives:

{∆i |i ∈ {1, 2, ...,Nf }},

where i denotes the index of triangle faces starting from 1, and Nf
is the number of triangle faces in the triangle mesh. Therefore, ∆i
denotes the ith triangle.
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Fig. 2. Prism structure for single triangle face

Fig. 3. Prism structure for neighboring triangle faces

In the following sections, any triangle related properties, includ-
ing vertices, normals, edges, etc. that carry a superscript i refer to
properties of the triangle ∆i

For each triangle ∆i , we define a prism structure P i as shown in
Figure 2, where pi ,qi ,r i are the three vertices of ∆i . The model is
called PriMo just because the structure looks like prism, however
the elastic joint energy only exists between any pair of prism P i and
P j , thus there is no energy related to each top and bottom prism
face.

In the undeformed state, a pair of prisms P i and P j share a com-
mon face, but after a rigid transformation the side faces might
not coincide. The face of P i neighboring P j is a planar bi-linear
patch F i→j (u,v), (u,v) ∈ [0, 1]2, which interpolates its four cor-
ner vertices {F i→j (0, 0) , F i→j (0, 1) , F i→j (1, 0) , F i→j (1, 1)}. Sim-
ilarly, we denote the opposite face by F j→j (u,v) ⊂ Pj as shown in
Figure 3. We define the energy between P i and P j as

Ei j :=
∫
[0,1]

∥F i→j (u,v) − F j→i (u,v) ∥2 dudv, (1)

which is the integration of squared euclidean distance between
all pairs of points on F i→j (u,v) and F j→i (u,v). The deformation
energy of the whole mesh can now be defined as an weighted-sum

of pairwise energies Ei j

E :=
∑
{i, j }

wi jEi j , wi j :=
∥ei j ∥2

|∆i | + |∆j |
, (2)

where |∆k | denotes the area of triangle face k before deformation,
and ∥ei j ∥ := ∥

(
pi ,qi

)
∥ = ∥

(
p j ,qj

)
∥ is the length of the shared

edge of ∆i and ∆j also before deformation. We initializewi j before
mesh deformation and maintain it unchanged during deformation.
Besides, we initialize the four corner of F i→j (u,v) as following:

F i→j (0, 0) =pi − hnp
i
,

F i→j (0, 1) =pi + hnp
i
,

F i→j (1, 0) =qi − hnq
i
,

F i→j (1, 1) =qi + hnq
i
,

(3)

where nv is the vertex normal of vertex v , and h is defined as the
prism height. Analogously, we initialize all F i→j (u,v) based on
equation (3). Notice that due to pi = p j , qi = qj , np

i
= np

j
, and

nq
i
= nq

j
, thus the initial(undeformed) state of prisms is the unique

global minimum of the energy E. Any bending, shearing, twisting
or stretching increases it.

2.1.2 Numerical Solution. The user controls the surface deforma-
tion by manually setting the position and/or orientation of certain
prisms(faces), and then the optimization step finds the optimal rota-
tion Ri , translation t i for each unconstrained prism(face), such that
the E defined by equation(2) is minimized:

argmin
{R i ,t i }

∑
{i, j }

wi j
∫
[0,1]

∥RiF i→j (u,v)+t i−R jF j→i (u,v)−t j ∥2dudv .

(4)
We solve minimization defined by equation(4) using a generalized
global shape matching approach of [Pottmann et al. 2002].
Pottmann et al. propose an iterative Newton-type simultaneous

registration method for points by solving sparse linear system. In
our case, during each iteration, a sparse linear system is solved for a
descent direction, which corresponds to an affine transformationAi

for each unconstrained prism. And then, a projection of Ai to the
manifold of rigid transformation, containing a rotation transform Ri

and translation t i , is achieved by solving a pairwise shape matching
problem.

2.1.3 Global shapematching. The descent direction of theNewton-
type iteration approximate the rigid motions

(
Ri , t i

)
, which can be

formulated by angular velocityωi and linear velocityvi :

Ri (p) + t i ≈ p +ωi × p +vi =: Ai (p) , (5)

where p is an arbitrary point. Using the first-order approximation
defined in equation (5), we reformulate equation (4) as:

argmin
{ωi ,v i }

∑
{i, j }

wi j
∫
[0,1]

∥F i→j (u,v) +ωi × F i→j (u,v) +vi

− F j→i (u,v) −ω j × F j→i (u,v) −v j ∥2dudv . (6)

To solve the minimization problem defined by equation(6), we
need to solve the point-alignment problem in [Pottmann et al. 2002]
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Fig. 4. Project affine transformation to rigid transformation

at first. Assume two corresponding points pi→j and p j→i sampled
from neighboring faces F i→j (u,v) and F j→i (u,v). The global en-
ergy E could be represented as:

E =
∑
{i, j }

wi j
∫
[0,1]

∥pi→j +ωi × pi→j +vi

− p j→i −ω j × p j→i −v j ∥2dudv . (7)

As demonstrated in [Pottmann et al. 2002], collecting all unknowns
in the vector c = {ω1,v1,ω2,v2, ...,ωNf ,vNf }, we may write
equation(7) in matrix form:

E = cT Bc + 2Ac +
∑
{i, j }

wi j
(
pi→j − p j→i

)
, (8)

where B is a 6N × 6N symmetric positive definite matrix and A is a
6N × 1 vector. Hence, we let ∂E

∂c = 0 to get the local minimum for
each Newton-type iteration. This leads to:

∂E

∂c
= Bc +AT = 0. (9)

Notice that equation(9) formalize a sparse linear system, which
could be solved efficiently by a linear solver using sparse Cholesky
factorization[Guennebaud et al. 2010].
We replace all the component-wise products of the form(

pi→j
)
x

(
p j→i

)
y

(10)

by 〈(
F i→j

)
x

(
F j→i

)
y

〉
2
, (11)

which is defined in the following section.

2.1.4 Pairwise shape matching. We implemented the pair wise
shape matching proposed by [Botsch et al. 2006] that solves for the
best rigid transformation which registers one set of faces to the
other set of faces. The implementation is a generalization of the
pairwise point set registration proposed by [Horn 1987]. This shape
matching is used in both local and global shape matching in the
original Primo implementation. In our implementation, given the
relatively small number of triangles in the crease pattern mesh, the
global shape matching algorithm converges faster than local shape
matching.
The results of the global energy minimization Ai need to be

projected back on to the manifold of rigid motions
(
Ri , t i

)
before

being applied on the prisms to keep the deformed mesh as rigid
as possibleP i [Botsch et al. 2006]. To retrieve this step, [Botsch
et al. 2006] propose to project Ai by finding the closest rigid motion

(
Ri , t i

)
that matches the affine transformed prism P i instead of

[Pottmann et al. 2002]’s proposed method of choosing
(
Ri , t i

)
as the

helical motion associated with
(
ωi ,vi ) for faster convergence on

large deformations. This projection, as shown in Figure 4 yields a
shape matching problem that minimizes the energy between the
affine transformed faceAi (F i→j (u,v)

)
and the rigidly transformed

face RiF i→j (u,v) + t i :

argmin
{R i ,t i }

∫
[0,1]

| |RiF i→j (u,v)+ t i −Ai
(
F i→j (u,v)

)
| |2dudv . (12)

Details of the shape matching algorithm will be explained as
follow. Suppose we have two functions defined with bi-linear inter-
polation a(u,v) and b(u,v), their L2 inner product can be simplified
to the weighted sum of 16 combinations of corner values:∫

[0,1]
a(u,v) · b(u,v)dudv = 1

9

1∑
i, j,k,l=0

ai j · bkl 2(−|i−k |− |j−l |)

=: ⟨a,b⟩2 . (13)

With equation(13), the continuous energy of equation(12) evalu-
ates to 〈(

F i→j −Ai
(
F i→j

))
,
(
F i→j

)
−Ai

(
F i→j

)〉
2
, (14)

where F i→j and Ai (F i→j ) are the bi-linear interpolation function
of the two faces to be matched.
We firstly calculate the weighted centroids ci and c∗ of the two

face sets to be matched.

ci =
1∑
j ∈Ni

∑
j ∈Ni

wi j

4

1∑
k,l=0

F i→j (k, l) , (15)

c∗ =
1∑
j ∈Ni

∑
j ∈Ni

wi j

4

1∑
k,l=0

Ai
(
F i→j (k, l)

)
, (16)

We then derive the optimal rotation according to [Horn 1987] Ri by
first building the matrix N =

©«
Sxx + Syy + Szz Syz − Szy Szx − Sxz Sxy − Syx

Syz − Szy Sxx − Syy − Szz Sxy + Syx Szx + Sxz
Szx − Sxz Sxy + Syx −Sxx + Syy − Szz Syz + Szy
Sxy − Syx Szx + Sxz Syz + Szy −Sxx − Syy + Szz

ª®®®¬
from the component-wise L2 inner products.

Sxx =
∑
j ∈ Ni

wi j
〈(
F i→j − ci

)
x
,
(
F j→i − c∗

)
x

〉
2
, (17)

Sxy =
∑
j ∈ Ni

wi j
〈(
F i→j − ci

)
x
,
(
F j→i − c∗

)
y

〉
2
, (18)

The eigenvector Q corresponding to the largest eigen value of N
is the optimal rotation Ri in the form of a unit quaternion. With the
rotation, the optimal translation is derived by t i = c∗ − Rici .

2.1.5 Boundary condition. Suppose that the Prism P j in equa-
tion(4) is constrained by user input, so P j should be remain identical
before and after optimization. Therefore,ω j = 0 andv j = 0 in the
first-order approximation equations.
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Algorithm 1: Newton-type Global Shape Matching
λ = 1;
repeat

Find optimal velocities
[
ωi ,vi ] ;

for P i in all unconstrained prisms do[
Ri , t i

]
= project

(
λωi , λvi ) ;

P i = Ri
(
P i
)
+ t i ;

end
λ = λ ∗ 0.5

until converged;

2.1.6 Newton-type algorithm. Following [Botsch et al. 2006], we
scale each Newton-like descent direction by a step size λ, and halve
it after each step. The whole Newton-type non-linear optimization
algorithm is demonstrated in Algorithm 1.

2.2 Curve Folding
In this section, we demonstrate how to generate curve folding se-
quence based on our coupled prisms model with modified energy
term. Also, we show how to triangulate a 2D planar mesh given
a crease pattern, and fold the triangle faces along the crease edge
segments step by step as hard constraints for our optimization algo-
rithm.

2.2.1 Deformation model. Following the deformation model as
described in [Kilian et al. 2017], we penalize the stretching more
than bending between prisms. Also, we fold all the pairs of faces
along the crease curve locally, and then treat each pair of faces as
a whole rigid unit during optimization. All of our folding results
shown in the next section are generated in this way.

2.2.2 Computing a folding sequence. Let ei =
(
pi ,qi

)
∈ ∆i be

oriented such that x i be the unit vector parallel to qi −pi . ni is the
normal of ∆i . Thus,

ni (θ ) = cos (θ )ni − sin (θ ) (ni × x i ), (19)

where θ is the folding angle. In all our folding example, we start
from θ = 0 and increase it by 1◦ per step.

2.2.3 Meshing. The underlying representation of the deforming
creased sheet is a triangle mesh. The crease pattern is defined by
a set of line segments and curves defined in 2D space. We first
initialize a planar polygonal mesh with sampled segments on the
crease curves and boundaries as polygon edges. Then according to
[Kilian et al. 2017] we triangulate the planar mesh by computing a
constrained Delaunay triangulation [Shewchuk 1996] on the crease
pattern mesh, as shown in Figure 5. The level of triangulation is
calculated to balance between crease curve fidelity and numerical
error due to small triangles.

2.3 Rendering
To achieve the realistic appearance of paper, we implement the paper
BSDF[Papas et al. 2014]. We implement this paper BSDF in our own
renderer, and render our folding sequence using path tracing. Figure
6 shows a paper rendered with back-lit light source and textured
depth.

Fig. 5. Constrained Delaunay triangulation

Fig. 6. Paper BSDF with textured depth

3 RESULT
We implement our PriMo model and paper folding model based on
OpenMesh[Botsch et al. 2002]. In Figure 7, we show a typical inter-
active deformation editing demo. In order to show the robustness of
PriMo model, we randomly rotate all the prisms and translate them
to the same position of world space, and then try to recover the
original shape of the mesh. As shown in Figure 8, the shape could
be recovered successfully after 20 iterations.

For curve folding, we generate 4 folding sequences with 4 different
crease pattern. Figure 9-12 shows the result when folding angle
θ = 0◦, 30◦, 60◦,and90◦
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(a) (b)

(c) (d)

Fig. 7. Interactive deformation editing

(a) iteration: 0 (b) iteration: 5

(c) iteration: 10 (d) iteration: 20

Fig. 8. PriMo Robustness Demo
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(a) 0◦ (b) 30◦

(c) 60◦ (d) 90◦

Fig. 9. Curve folding demo 1

(a) 0◦ (b) 30◦

(c) 60◦ (d) 90◦

Fig. 10. Curve folding demo 2

Jonathan Richard Shewchuk. 1996. Triangle: Engineering a 2D quality mesh generator
and Delaunay triangulator. In Applied computational geometry towards geometric
engineering. Springer, 203–222.



6 • Wang and Zhao

(a) 0◦ (b) 30◦

(c) 60◦ (d) 90◦

Fig. 11. Curve folding demo 3

(a) 0◦ (b) 30◦

(c) 60◦ (d) 90◦

Fig. 12. Curve folding demo 4


	Abstract
	1 Introduction
	2 Methodology
	2.1 PriMo
	2.2 Curve Folding
	2.3 Rendering

	3 Result
	References

